

MANUAL

SMARTSTARTM-G SERIES

REFRACTOR, NEWTONIAN AND MAKSUTOV-CASSEGRAIN TELESCOPES

www.ioptron.com

WARNING!

NEVER USE A SMARTSTAR TELESCOPE TO LOOK AT THE SUN!

Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing.

TIP:

For beginner users
without a lot of
knowledge in astronomy
please refer to the Quick
Start Reference. It
contains enough
information to get you
started so you can enjoy
the night sky without
knowing all the jargon
and math.

CONTENTS

Chapter. 0 Quick Start Reference

0.1 Assembly

0.2 GoToNova[™] Features

0.3 Getting Started

Chapter. 1 Set Up And Align

1.1 Basic Symbols

1.2 Set Up

1.3 Align

Chapter. 2 Select And Slew

2.1 Planets, sun, moon

2.2 Deep Sky Objects

2.3 Comets

2.4 Asteroids

2.5 Stars

2.6 User Objects

2.7 Enter Position

2.8 Land Marks

2.9 Watch List

Chapter. 3 Other Functions

3.1 Sync To Target

3.2 Electronic Focuser

3.3 PEC option

3.4 Set up tracking

3.5 User objects

3.6 Auto guide

3.7 Park scope

3.8 To park position

Chapter. 4 How to Observe

4.1 Observe manually

4.2 Observe using arrow keys

4.3 the Moon

4.4 Tracking

Appendix

A. Menu Structure

B. Messier Catalog

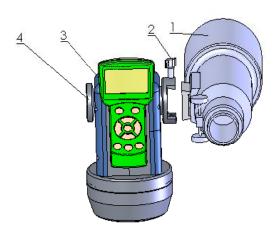
C. Modern Constellations

D. Celestial Coordinates

E. Specifications

F. Products List

G. Alignment Stars


TIP: Learn some astronomy basics For beginner users without a lot of knowledge in astronomy please refer to the Quick Start Menu. It contains enough information to get you started so you can enjoy the night sky without knowing all the jargon and math.

For more serious users we assume that you know some astronomy basics in reading this manual. Please refer to Appendix A for a more detailed menu structure.

Chapter 0 Quick Start Reference

0.1 Assembly

- 1. Telescope tube
- 2. Dovetail lock
- 3. Hand held controller
- 4. Altitude lock

FIG. 1

- 1. Unpack the package, take out all the parts.
- 2. Set up the tripod(6).
- 3. Put the mount(5) on the top of tripod(6), hold the mount with one hand, put the supporting rod(7) through the hole on the top of tripod with the other hand, screw and tighten the mount on the top of tripod(6).
- 4. Tighten the telescope tube(1) on the dovetail with lock (2), point the tube upward vertically and tighten the altitude lock (4).

TIP:

Alt-Az mode is easier to set up, and easier to operate. Adjust the tripod and the mount, check the bubble on the mount, make sure it is horizontal.



A-series can also work in equatorial mode

TIP:

If you are not using the AC adaptor, you need eight AA batteries.

- 5. Fit the tray (8) to the lower end of the rod (7), also fit the three indents to the three legs of tripod, tighten the tray lock (9). To avoid any damage to the tray or tripod, please do not use excessive strength.
- 6. Open the cover of battery box on the side of the mount (below dovetail), install 8 AA batteries (not included) appropriately. If you are using 12V AC adapter, plug the connector to the socket on the other side of the mount (below altitude lock). Connect hand controller(3) and mount(5) with retractable cable (provided). You can pick any one of the two sockets below altitude lock to plug in.
- 7. Always adjust the tripod to center the bubble in the circle on the mount. It is important that the tripod stay horizontal.

0.2 GoToNova[™] Features: (8402)

The 8402 GoToNovaTM hand held controller controls SmartStarTM G series telescopes. Its user interface is simple and easy-to-learn, it can automatically move to any of the 50,000 objects stored in the database with the push of a button.

LCD Display: 8-line big screen, it displays all the information

Back Key: Moves back to the previous screen.

Menu Key: Gets to the Main Menu.

Enter Key: Confirms an input, goes to the next menu, selects

a choice, slews the telescope to a selected object.

Arrow Keys: Moves the cursor, adjusts numerical values,

moves the telescope in a specific direction.

Speed Key: Adjusts the speed. **Light Key:** Adjusts the light.

Help Key: For help.

Useful Links

Sky and Telescope

http://www.skyandtelescope.com/

Astronomy

http://www.astronomy.com/asy/default.aspx

The Hubble Site

http://hubblesite.org/

TIP:
GPS module makes life a lot easier, it automatically sets the time and location for you.

TIP:
The controller
automatically skips
those stars below the
horizon of your current
time and location.

0.3 Getting Started

For most beginner users who may not need a lot of astronomical detail this chapter gives just enough information to set up the controller. After the easy-to-follow setup you will be ready to point your telescope to wherever you want in the night sky.

After assembling the telescope [Refer to our Assembling Chart], you need to level the mount. This is done by centering the bubble in the circle on the mount. Turn on the power button located on the mount. You will see the iOptron logo displayed for a few seconds. Then you will see the zero position screen. By default, it works in Alt-Az mode:

TR.A. 1h36m 2s
TDEC 90° 0' 0"
R.A. 19h52m 5s
DEC 47° 31'16" 64X
Lgst 7h52m38s Stop
Alt. 0° 0' 0"
Azi. 0° 0' 0"
2007-07-10 14:25:23 N

When the power is turned on, you will see "G_ON" (GPS turned on) on the upper right corner of the screen. In about a minute, after the internal GPS communicate with the satellites, you will see "G_OK" on the screen, both time and location are automatically set.

Press MENU button, then you will see this screen:

Select and slew Sync. To target Electric Focuser Set up GOTONOVA Align PEC option Set up tracking User objects Auto guide Park scope To park position

From the main menu, select "Align". The system provides "one-star align" and "two-star align".

Select "one-star align". You will see this screen:

Alphard
A 39° 43.3′ Z 221° 20.0′
Center the target then
press "ENTER" 2X

Use "UP" and "DOWN" arrow buttons to select a star and press ENTER. Use SPEED button to select a speed, and use arrow buttons to center the star in your telescope. Press ENTER when finished. Now your GoToNovaTM is ready to

TIP:
Spend some time
familiarizing yourself
with these bright stars in
the night sky

direct you to any location in the night sky (provided that the object is in the database and above the horizon). Simply choose any object in the menu and press ENTER. Although not required, we strongly suggest that you double check your initial alignment with additional bright objects in the night sky, For example, in the menu, select "Venus" (if it is indeed in the sky) and press ENTER. When the motor stops check to see if Venus is in the center of your eye piece. If your previous steps were correct, it should be. You may need to make some minor adjustments to center the object. Otherwise, use "two-star align".

What's Next?

Most beginner users are now ready to explore the night sky without needing to refer to the manual any further. The function you will need most is "Select and slew" in the main menu. From there you can select and explore planets, stars, galaxies, nebulae, comets, asteroids, etc.-- virtually all of the most common celestial objects are included.

Appendix:
Check Appendix D for a brief introduction of celestial coordinate systems

Chapter.1 Set Up And Alignment

1.0 Basic Symbols

R Right ascension D Declination Α Altitude Ζ Azimuth Sidereal speed Cele Solar speed Sola Lunar speed Moon Land mode Land nnX Slewing speed

1.1 <u>Set Up</u>

By default, the mount works in Alt-az mode. Turn on the power button located on the mount. You will see the iOptron logo screen. Then you will see the zero position screen:

TR.A. 1h36m 2s
TDEC 90° 0' 0"
R.A. 19h52m 5s
DEC 47° 31'16" 64X
Lgst 7h52m38s Stop
Alt. 0° 0' 0"
Azi. 0° 0' 0"
2007-07-10 14:25:23 N

When the power is turned on you will see "G_ON" (GPS turned on) in the upper right corner of the screen. In about a minute, after the internal GPS communicate with the satellites, you will see "G_OK" on the screen. Both time and location are automatically set. Setup is finished in Alt-az mode.

The mount can also work in equatorial mode. Tilt the mount to the appropriate angle and point it to the polar star. Go to "Set up GotoNova", select "Set Mount Type", and select Equatorial mode.

1.2 <u>Align</u>

1.2.1 One-Star Align

From the main menu, select "Align". The system provides for "one-star align" and "two-star align".

Select "one-star align". You will see this screen:

Alphard

A 39 $^{\circ}$ 43.3 $^{\prime}$ Z 221 $^{\circ}$ 20.0 $^{\prime}$

Center the target then

press "ENTER" 2X

Use "UP" and "DOWN" arrow buttons to select a star and press ENTER. Use SPEED button to select a speed, and use arrow buttons to center the star in your telescope. Press ENTER when finished.

1.2.2 Two-Star Align

If your mount is not horizontal one-star align is usually not accurate enough. You will need to do two-star align. Select "Two-star align" from the previous menu. Select one bright star from the menu. Use the arrow buttons to center it in the telescope and press ENTER. Select a second bright star and use the arrow keys to center the second star. Press ENTER. Two-star align is finished.

Appendix:
Check Appendix B and
Appendix C for names of
galaxies and
constellations

WARNING:
NEVER LOOK DIRECTLY
AT THE SUN WITH THE
NAKED EYES OR WITH
A TELESCOPE(UNLESS
YOU HAVE THE
PROPER SOLAR
FILTER). PERMANENT
AND IRREVERSIBLE
EYE DAMAGE MAY
RESULT.

<u>TIP:</u> You

You can define and save new celestial objects in the database.

Chapter. 2 Select And Slew

After you have finished the set up and align steps in chapter 1 go to the main menu. Select "Select and slew." Now you can select any celestial objects in the database and GoToNovaTM will take you there—whether it is a star, a planet, an asteroid, a comet or a galaxy.

Check astronomy books and magazines such as "Sky and Telescope." Familiarize yourself with the names in the night sky. Use the arrow buttons to move your cursor and press ENTER to select an object.

2.1 Planets, sun, moon

This menu includes the Sun, the Moon, Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune.

WARNING: NEVER LOOK DIRECTLY AT THE SUN WITH THE NAKED EYES OR WITH A TELESCOPE (UNLESS YOU HAVE THE PROPER SOLAR FILTER). PERMANENT AND IRREVERSIBLE EYE DAMAGE MAY RESULT.

2.2 Deep Sky Objects

This menu includes objects outside our Solar system such as galaxies, star clusters, quasars, nebulae, etc.

2.2.1 Named Deep Sky Objects

This menu contains 60 named deep sky objects. If you know the names of the objects you can use this menu.

2.2.2 Messier Catalogue

Contains 110 objects from the Messier catalogue.

2.3 Comets

Contains up to 256 comets.

2.4 Asteroids

Contains up to 4096 asteroids.

2.5 Stars

2.5.1 Named Stars

Contains 191 stars.

2.5.2 Constellations

Contains 88 constellations.

2.5.3 Double Stars

Contains 40 double stars.

2.5.4 SAO Bright Stars

Contains up to 26,584 SAO bright stars.

2.6 Constellations

TIP:

By specifying R.A. and DEC numbers (or A and Z), you can point your telescope to anywhere on the celestial sphere.

2.7 User Objects

User defined objects, user can define up to 128 objects

2.8 Enter R.A. DEC.

In Equatorial mode the user can target a location by specifying its RA (Right Ascension) and DEC (Declination). Use the arrow buttons to move the cursor and adjust the values. Press ENTER.

In Altazimuth mode the user can target a location by specifying its A (Altitude) and Z (Azimuth). Use the arrow buttons to move the cursor and adjust the values. Press $\sf ENTER$.

Appendix:
Check Appendix A for complete menu structures

Chapter. 3 Other Functions

3.1 Sync To Target

Matches the telescope's current equatorial coordinates to Target Right Ascension and Declination.

3.2 Electric Focuser

If you have an electric focuser in your system, use this option to adjust the focuser.

3.3 PEC option

If you telescope is equipped with Periodic Error Correction, use this option to adjust Periodic Error Correction.

3.4 Set up tracking

Set up tracking speed.

3.5 User objects

Add, edit or delete user objects.

3.6 Auto guide

If your telescope is equipped with auto guide use this option.

3.7 Park Scope

Park your telescope.

3.8 To Park position

Move your telescope to park position.

TIP:

The earth's axis of rotation is tipped over about 23.5° from the vertical.

TIP:

People usually use alt-zi mode to observe land objects.

TIP:

People usually use optics that produces normal images (not revered, or up-sidedown images) to observe land objects.

TIP: Use slower speed for fine tuning.

Chapter. 4 How to Observe

4.1 Land Objects

If you want to observe land objects, such as a mountain top or a bird, you should use "Land" mode. Simply point the telescope to your target and look through the eye piece. For certain models, such as Newtonian, the image you see in the eye piece is up-side down.

If you don't want to turn on power and use hand controller, then you need to loosen the telescope's tripod base lock knob and Altitude lock so that the telescope can move freely in both directions. Next, use the viewfinder to locate your target. Center the target in your eyepiece and tighten the base and Altitude locks. Then adjust focus.

You can also use the hand controller to observe land objects. Turn on the power and from the main menu choose "Land Objects". If you already have land marks saved in your system and you want to go to one of those land marks (this is assuming that the tripod is not moved since you recorded those land marks), select "GoTo Land Mark" and pick the land mark you want to observe. If you want to record new land marks, select "Record New Land Mark", on the next screen, use "SPEED" button to choose an appropriate speed, then use arrow keys to move your telescope to your target. When the target is centered, press "ENTER", then give it a name(with "UP" and "DOWN" arrows you can input alphabets, with "LEFT" and "RIGHT" to move the cursor). Push "ENTER" to confirm you input. Next time, you can go to this land mark by selecting its name in the list under "GoTo Land Mark" menu.

If you use "Land" mode to observe celestial objects in the night sky, you will notice that stars drift away slowly from your eyepiece field, and you have to keep adjusting your telescope to re-center your target. This drift is caused by the rotation of the Earth. This drift can be countered by using the automatic tracking feature of GoToNovaTM.

4.2 Using Arrow Keys

On our GoToNovaTM controllers, there are four arrow keys. You can use these keys to adjust and fine tune your telescope. To use this function, make sure you tighten both the Altitude and base locks. Then turn on the power.

With the "User position" screen, press ENTER button to switch between "Land" and "Cele" mode (upper right corner). Use SPEED button to adjust the speed (lower right corner). Use higher speed for initial adjustment. Use lower speed for fine tuning.

Center your target in your eye piece then adjust the focus.

User position	Land	
R: 1h47.8m	D: 32° 3.3'	
A 89° 58.5'	Z 179° 11.8'	
07-06-06	08:59:20 8x	

A Full Moon is not the best time to watch the Moon.

4.3 The Moon

The Moon, when visible in the night sky, is most likely the first celestial object you want to watch with your new telescope. It is also the most convenient object in the sky to test some of the GoToNovaTM functions. You can even use the Moon to align your telescope.

There are a lot to explore on the surface of the Moon, such as craters, mountain ranges and fault lines, etc. During full Moon, however, no shadows are seen on the Moon surface and it becomes too bright for the details to be seen. The best time to observe the Moon is during its crescent or half phase.

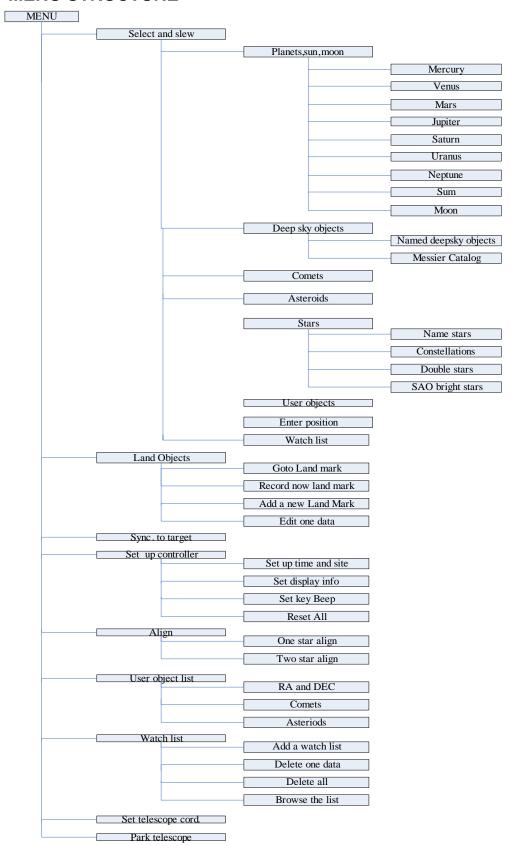
A neutral density Moon filter is recommended when observing the Moon. This filter cuts down on the bright glare and enhances contrast. You will be amazed by the dramatic image.

4.4 Tracking

The tracking function is used to counteract the rotation of the earth. When the telescope is in tracking mode, the celestial object will not drift away from your eye piece field. This function is essential for astrophotography.

When you switch to "Cele" mode, the system is automatically in tracking mode. When you switch back to "Land" mode, the tracking stops.

A user can setup tracking in the main menu by selecting "Set up tracking". Then user can select "sidereal speed", "Solar speed", "Lunar speed", or user can define a speed using "User defined speed".


4.5 The First Night

With the convenience of SmartStarTM, star hunting is made much easier. But this does not mean that you don't need to do any homework before you actually spend the night watching the night sky, especially if you have never tried this before

You should play with SmartStar[™] and familiarize yourself with the components and functions during day time, check the altitude and latitude of your location (where you are going to use the SmartStar[™] at night).

Spend sometime to study the current night sky, know what to expect when you are out there. It will be extremely helpful if you are able to identify some of the bright stars in the night sky.

APPENDIX A MENU STRUCTURE

APPENDIX B Messier Catalog

```
Andromeda
0
               M31 The Andromeda Galaxy spiral galaxy (type Sb)
0
               M32 Satellite galaxy of M31 elliptical galaxy (type E2)
               M110 Satellite galaxy of M31 elliptical galaxy (type E6pec)
0
       Aquarius
               M2 globular cluster
0
               M72 globular cluster
0
               M73 system or asterism of 4 stars
0
       Auriga
               M36 open cluster
0
               M37 open cluster
0
               M38 open cluster
0
       <u>Cancer</u>
               M44 Praesepe, the Beehive Cluster open cluster
0
               M67 open cluster
0
       Canes Venatici
               M3 globular cluster
               M51 The Whirlpool Galaxy spiral galaxy
0
               M63 Sunflower galaxy spiral galaxy
0
               M94 spiral galaxy
0
               M106 spiral galaxy
0
       Canis Major
               M41 open cluster
0
       Capricornus
               M30 globular cluster
0
       Cassiopeia
               M52 open cluster
0
               M103 open cluster
0
       Cetus
               M77 spiral galaxy
0
       Coma Berenices
               M53 globular cluster
0
               M64 Blackeye galaxy spiral galaxy
0
               M85 elliptical galaxy
0
               M88 spiral galaxy
               M91 spiral galaxy
0
               M98 spiral galaxy
0
               M99 spiral galaxy
0
               M100 spiral galaxy
0
       Cygnus
               M29 open cluster
0
               M39 open cluster
       Draco
               M102 may be NGC 5866 Spindle Galaxy, a lenticular galaxy (type S0_3)
0
       Gemini
               M35 open cluster
0
       Hercules
               M13 Great Hercules Globular Cluster globular cluster
0
               M92 globular cluster
0
       Hydra
               M48 open cluster
```

```
M68 globular cluster
0
               M83 spiral galaxy
0
       <u>Leo</u>
               M65 spiral galaxy
0
               M66 spiral galaxy
0
               M95 spiral galaxy
0
               M96 spiral galaxy
0
               M105 elliptical galaxy
0
       Lepus
               M79 globular cluster
0
       <u>Lyra</u>
               M56 globular cluster
0
               M57 The Ring Nebula planetary nebula
0
        Monoceros
               M50 open cluster
0
       Ophiuchus
               M9 globular cluster
0
               M10 globular cluster
0
               M12 globular cluster
0
               M14 globular cluster
0
               M19 globular cluster
0
               M62 globular cluster
0
               M107 globular cluster
0
        Orion
               M42 The Great Orion Nebula diffuse nebula
0
               M43 part of the Orion Nebula (de Mairan's Nebula) diffuse nebula
0
               M78 diffuse nebula
0
       <u>Pegasus</u>
               M15 globular cluster
0
       Perseus
               M34 open cluster
0
               M76 The Little Dumbell, Cork, or Butterfly planetary nebula
0
        Pisces
               M74 spiral galaxy
0
        Puppis
               M46 open cluster
0
               M47 open cluster
0
               M93 open cluster
0
       Sagitta
               M71 globular cluster
0
        Sagittarius
               M8 The Lagoon Nebula diffuse nebula
0
               M17 The Omega or Swan or Horseshoe Nebula diffuse nebula
0
               M18 open cluster
0
               M20 The Trifid Nebula diffuse nebula
0
               M21 open cluster
0
               M22 globular cluster
0
               M23 open cluster
0
               M24 Milky Way Patch star cloud with open cluster (NGC 6603)
0
               M25 open cluster
0
               M28 globular cluster
0
               M54 globular cluster
0
               M55 globular cluster
0
               M69 globular cluster
0
               M70 globular cluster
```

```
M75 globular cluster
0
       Scorpius
               M4 globular cluster
0
               M6 The Butterfly Cluster open cluster
0
               M7 Ptolemy's Cluster open cluster
0
               M80 globular cluster
0
        Scutum
               M11 The Wild Duck Cluster open cluster
0
               M26 open cluster
0
        Serpens Caput
               M5 globular cluster
0
        Serpens Cauda
               M16 open cluster associated with the Eagle Nebula (IC 4703)
0
        Taurus
               M1 The Crab Nebula supernova remnant
0
               M45 Subaru, the Pleiades--the Seven Sisters open cluster
               M33 The Triangulum Galaxy (also Pinwheel) spiral galaxy
0
       Ursa Major
               M40 Double Star Winecke 4 (WNC 4)
0
               M81 Bode's Galaxy (nebula) spiral galaxy (type Sb)
0
               M82 The Cigar Galaxy irregular galaxy
0
               M97 The Owl Nebula planetary nebula
0
               M101 The Pinwheel Galaxy spiral galaxy (type Sc) (M102 may be a Duplication
of M101)
               M108 spiral galaxy (type Sc(s)III)
0
               M109 spiral galaxy (type SBb(rs)I)
0
        Virgo
               M49 elliptical galaxy (type E1 or S0_1(1))
0
               M58 spiral galaxy (type Sab(s)II)
0
               M59 elliptical galaxy (type E5)
0
               M60 elliptical galaxy (type E2 or S0_1(2))
0
               M61 spiral galaxy (type Sc(s)I.2)
0
               M84 elliptical or lenticular galaxy (type SB0_2/3(r)(3))
0
               M86 elliptical galaxy (type E3 or S0_1(3))
0
               M87 Virgo A elliptical galaxy (type E0), with Smoking Gun
0
               M89 elliptical galaxy (type E0)
0
               M90 spiral galaxy (type Sab(s)I-II)
0
               M104 The Sombrero Galaxy spiral galaxy (type Sa+/Sb-)
0
        Vulpecula
               M27 The Dumbbell Nebula planetary nebula
```

APPENDIX C Modern Constellations

Modern Constellations			
constellation	abbreviation	genitive	origin
<u>Andromeda</u>	And	Andromedae	ancient (<u>Ptolemy</u>)
<u>Antlia</u>	Ant	Antliae	1763, <u>Lacaille</u>
<u>Apus</u>	Aps	Apodis	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Aquarius</u>	Aqr	Aquarii	ancient (<u>Ptolemy</u>)
<u>Aquila</u>	Aql	Aquilae	ancient (<u>Ptolemy</u>)
<u>Ara</u>	Ara	Arae	ancient (<u>Ptolemy</u>)
<u>Aries</u>	Ari	Arietis	ancient (<u>Ptolemy</u>)
<u>Auriga</u>	Aur	Aurigae	ancient (<u>Ptolemy</u>)
<u>Boötes</u>	Воо	Boötis	ancient (<u>Ptolemy</u>)
<u>Caelum</u>	Cae	Caeli	1763, <u>Lacaille</u>
Camelopardalis	Cam	Camelopardalis	1624, <u>Bartsch^[2]</u>
Cancer	Cnc	Cancri	ancient (<u>Ptolemy</u>)
Canes Venatici	CVn	Canum Venaticorum	1690, Firmamentum Sobiescianum, <u>Hevelius</u>
Canis Major	СМа	Canis Majoris	ancient (<u>Ptolemy</u>)

Canis Minor	СМі	Canis Minoris	ancient (<u>Ptolemy</u>)
<u>Capricornus</u>	Сар	Capricorni	ancient (Ptolemy)
<u>Carina</u>	Car	Carinae	1763, Lacaille, split from Argo Navis
<u>Cassiopeia</u>	Cas	Cassiopeiae	ancient (<u>Ptolemy</u>)
Centaurus	Cen	Centauri	ancient (<u>Ptolemy</u>)
Cepheus	Сер	Cephei	ancient (<u>Ptolemy</u>)
<u>Cetus</u>	Cet	Ceti	ancient (<u>Ptolemy</u>)
Chamaeleon	Cha	Chamaeleontis	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
Circinus	Cir	Circini	1763, <u>Lacaille</u>
<u>Columba</u>	Col	Columbae	1679, Royer, split from Canis Major
Coma Berenices	Com	Comae Berenices	1603, <i><u>Uranometria</u></i> , split from Leo
Corona Australis ^[3]	CrA	Coronae Australis	ancient (<u>Ptolemy</u>)
Corona Borealis	CrB	Coronae Borealis	ancient (Ptolemy)
<u>Corvus</u>	Crv	Corvi	ancient (<u>Ptolemy</u>)
<u>Crater</u>	Crt	Crateris	ancient (<u>Ptolemy</u>)
Crux	Cru	Crucis	1603, <u>Uranometria</u> , split from Centaurus

<u>Cygnus</u>	Cyg	Cygni	ancient (<u>Ptolemy</u>)
<u>Delphinus</u>	Del	Delphini	ancient (<u>Ptolemy</u>)
<u>Dorado</u>	Dor	Doradus	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Draco</u>	Dra	Draconis	ancient (<u>Ptolemy</u>)
<u>Equuleus</u>	Equ	Equulei	ancient (<u>Ptolemy</u>)
<u>Eridanus</u>	Eri	Eridani	ancient (<u>Ptolemy</u>)
<u>Fornax</u>	For	Fornacis	1763, <u>Lacaille</u>
<u>Gemini</u>	Gem	Geminorum	ancient (<u>Ptolemy</u>)
<u>Grus</u>	Gru	Gruis	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Hercules</u>	Her	Herculis	ancient (<u>Ptolemy</u>)
<u>Horologium</u>	Hor	Horologii	1763, <u>Lacaille</u>
<u>Hydra</u>	Нуа	Hydrae	ancient (<u>Ptolemy</u>)
<u>Hydrus</u>	Hyi	Hydri	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Indus</u>	Ind	Indi	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Lacerta</u>	Lac	Lacertae	1690, Firmamentum Sobiescianum, <u>Hevelius</u>
<u>Leo</u>	Leo	Leonis	ancient (<u>Ptolemy</u>)

Leo Minor	LMi	Leonis Minoris	1690, Firmamentum Sobiescianum, Hevelius
<u>Lepus</u>	Lep	Leporis	ancient (<u>Ptolemy</u>)
<u>Libra</u>	Lib	Librae	ancient (<u>Ptolemy</u>)
Lupus	Lup	Lupi	ancient (<u>Ptolemy</u>)
<u>Lynx</u>	Lyn	Lyncis	1690, Firmamentum Sobiescianum, Hevelius
<u>Lyra</u>	Lyr	Lyrae	ancient (<u>Ptolemy</u>)
<u>Mensa</u>	Men	Mensae	1763, <u>Lacaille</u>
Microscopium	Mic	Microscopii	1763, <u>Lacaille</u>
<u>Monoceros</u>	Mon	Monocerotis	1624, Bartsch
<u>Musca</u>	Mus	Muscae	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Norma</u>	Nor	Normae	1763, <u>Lacaille</u>
<u>Octans</u>	Oct	Octantis	1763, <u>Lacaille</u>
<u>Ophiuchus</u>	Oph	Ophiuchi	ancient (<u>Ptolemy</u>)
<u>Orion</u>	Ori	Orionis	ancient (<u>Ptolemy</u>)
<u>Pavo</u>	Pav	Pavonis	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Pegasus</u>	Peg	Pegasi	ancient (<u>Ptolemy</u>)

<u>Perseus</u>	Per	Persei	ancient (<u>Ptolemy</u>)
<u>Phoenix</u>	Phe	Phoenicis	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Pictor</u>	Pic	Pictoris	1763, <u>Lacaille</u>
<u>Pisces</u>	Psc	Piscium	ancient (<u>Ptolemy</u>)
Piscis Austrinus	PsA	Piscis Austrini	ancient (<u>Ptolemy</u>)
<u>Puppis</u>	Pup	Puppis	1763, <u>Lacaille</u> , split from <u>Argo Navis</u>
<u>Pyxis</u>	Рух	Pyxidis	1763, <u>Lacaille</u>
Reticulum	Ret	Reticuli	1763, <u>Lacaille</u>
<u>Sagitta</u>	Sge	Sagittae	ancient (<u>Ptolemy</u>)
Sagittarius	Sgr	Sagittarii	ancient (<u>Ptolemy</u>)
Scorpius	Sco	Scorpii	ancient (<u>Ptolemy</u>)
Sculptor	Scl	Sculptoris	1763, <u>Lacaille</u>
Scutum	Sct	Scuti	1690, Firmamentum Sobiescianum, Hevelius
Serpens ^[4]	Ser	Serpentis	ancient (<u>Ptolemy</u>)
<u>Sextans</u>	Sex	Sextantis	1690, Firmamentum Sobiescianum, Hevelius
<u>Taurus</u>	Tau	Tauri	ancient (<u>Ptolemy</u>)
<u>Telescopium</u>	Tel	Telescopii	1763, <u>Lacaille</u>

<u>Triangulum</u>	Tri	Trianguli	ancient (<u>Ptolemy</u>)
Triangulum Australe	TrA	Trianguli Australis	1603 <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Tucana</u>	Tuc	Tucanae	1603 <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Ursa Major</u>	UMa	Ursae Majoris	ancient (<u>Ptolemy</u>)
<u>Ursa Minor</u>	UMi	Ursae Minoris	ancient (<u>Ptolemy</u>)
<u>Vela</u>	Vel	Velorum	1763, Lacaille, split from Argo Navis
<u>Virgo</u>	Vir	Virginis	ancient (Ptolemy)
<u>Volans</u>	Vol	Volantis	1603, <u>Uranometria</u> , created by <u>Keyser</u> and <u>de</u> <u>Houtman</u>
<u>Vulpecula</u>	Vul	Vulpeculae	1690, Firmamentum Sobiescianum, Hevelius

APPENDIX D Celestial Coordinates

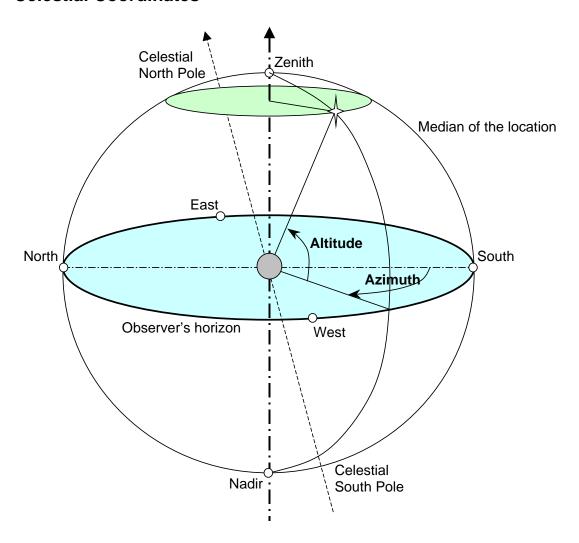


FIG.D1

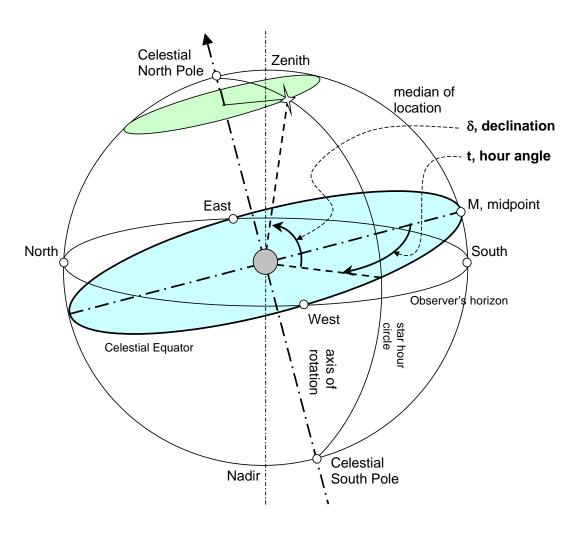
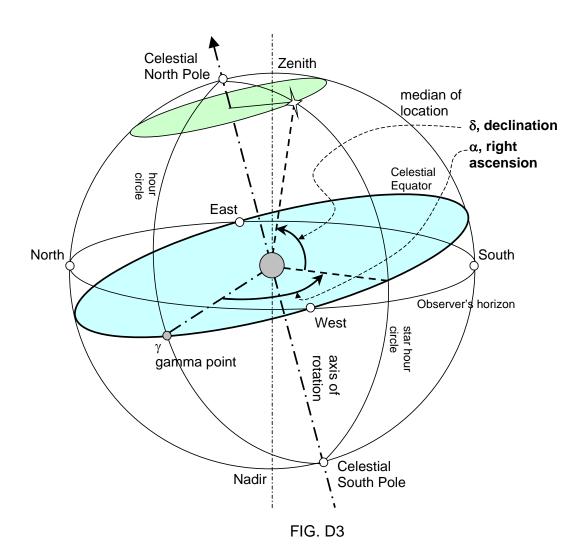



FIG.D2

TIP: Celestial sphere is an imaginary sphere of infinite radius.

You need two numbers to define a position on the celestial sphere.

To understand the celestial coordinate systems there are several concepts that should be clarified.

The **Celestial sphere** is an imaginary sphere of infinite radius concentric with the earth on which all celestial bodies are assumed to be projected. Celestial coordinates are used to define a point on the celestial sphere. A great circle, a.k.a., orthodrome, is the intersection of a sphere and a plane through its center. For the celestial sphere, a great circle is the intersection of a plane through the observer (on the earth) and the celestial sphere. Celestial pole is either of the two points of intersection of the celestial sphere and the extended axis of the earth. There are two celestial poles--the north celestial pole and the south celestial pole. The Zenith is the point of the celestial sphere vertically overhead. The Nadir is the point on the celestial sphere vertically below the observer, or 180 degrees from the zenith. A horizon is a great circle on the celestial sphere midway between the zenith and nadir. Celestial meridian is a great circle of the celestial sphere through the celestial poles and the zenith. Celestial equator is the intersection of the extended plane of the equator and the celestial sphere. It is the primary great circle of the celestial sphere in the equatorial system, everywhere 90-degree from the celestial poles.

We will talk about two different kinds of celestial coordinate systems. One is the **altazimuth** system. And the other is the **equatorial** system. The major difference between them is the referencing great circle. In **altazimuth** it is the celestial horizon, while in **equatorial** it is the celestial equator.

To define a position on the celestial sphere, we need two angles. In the **altazimuth** system (FIG. D1) these two angles are **altitude** (A) and **azimuth** (Z). Imagine a vertical plane perpendicular to the observer's horizon that passes through the observer and the star. The intersection of the vertical plane and the observer's plane of horizon defines the **azimuth**. It is measured from the south (or the north) to the intersection (in the direction of motion of the star, in degrees, $0^{\circ} \sim 360^{\circ}$). In GoToNovaTM azimuth is measured from the north. On the vertical plane, **altitude** is measured from the intersection to the direction of the star (also in degrees, $90^{\circ} \sim 90^{\circ}$).

In the **equatorial** system (FIG. D2 and D3), **hour angle (t)** is measured on the equator from the point of intersection of the celestial equator and the local meridian in the direction of motion of the star. The value of hour angle is measured in hours, minutes and seconds instead of degrees.

TIP:

Don't be intimidated by the geometry. Hands-on experience will help you understand the concepts better. Since the celestial sphere completes a full rotation in 24 hours, it follows that: $24 \text{ h} = 360^{\circ}$, $1 \text{ h} = 15^{\circ}$, 1 min = 15', and 1 sec = 15''. The **declination (\delta, DEC, or D)** is measured along the hour circle (perpendicular to the equator, passing through the celestial poles) passing through the star from the point it intersects the equator, it is in degrees. The **right ascension** (α , **RA or R)** is measured on the equator from the **gamma point** in the direction opposite to the direction of the motion of the star. It is in hours, minutes and seconds. Gamma point is the intersection of the hour circle and the celestial equator.

Appendix E SPECIFICATIONS

A-Series Specifications LCD Display	The CubeAltazimuth/Equatorial32-channel GPS included32 bitYesYes9-Speed (1x, 2x, 8x, 16x, 64x,Stainless Steel(6.0 lbs)8 x AA840250000+
A-R80 Optical Design Clear Aperture Focal Length Focal Ratio Resolving Power Finder Weight	80mm 400mm f/5 1.4 arc secs 5x24
A-N114 Optical Design Clear Aperture Focal Length Focal Ratio Resolving Power Finder Weight	114mm 1000mm f/8.8 1 arc secs Red dot
A-MC90 Optical Design	90mm 1200mm f/13.3 1.3 arc secs red dot
A-MC100 Optical Design	109mm 1400mm f/14 1.2 arc secs red dot

Appendix F Products List

	Product	Product Description	Components
	Star [™] -E S <u>eri</u> es		
	SmartSta ^{rTM} -E GOTO	Mount AltAzi Mount,	#1403, #1501
	SmartStar [™] -E-R80	Automatic Refractor GOTO Telescope	#8500, #8701
		Automatic Newtonian GOTO Telescope	#8500, #8732
		Automatic Maksutov GOTO Telescope	#8500, #8740
#8501	1"Stainless Steel Tripod	l For SmartStar [™] -E 26	

SmartStar[™]-A Se<u>ri</u>es

Smarts			
#8600	SmartStar [™] -A	Fully Automatic AltAzi/EQ GOTO Mount with GPS	#8411, #8402, #8601
#0600	SmartStar [™] -A-R80		
		Fully Automatic Refractor GOTO Telescope	#8600, #8701
	SmartStar TM -A-N114	Fully Automatic Newtonian GOTO Telescope	#8600, #8734
#8604	SmartStar [™] -A-MC90	Fully Automatic Maksutov-Cassegrain	
		GOTO Telescope	#8600, #8740
#8605	SmartStar TM -A-MC100	Fully Automatic Maksutov-Cassegrain	#8600, #8741
		GOTO Telescope	
#8601		1" AltAzi/EQ Stainless Steel Tripod	
		For SmartStar [™] -A	
#8606	1.5kg Counter Weight		
#8419	SmartStar [™] -PR	GOTO Equatorial Mount	#8400, #8413,
		•	#8414
#8400	GOTONova™		#8401
	Dual-Axis Motor Kit	For EQ、CG5、GPD、LX75 Mounts	Dual-Axis Motor
	Dual-Axis Motor Kit	TOTE COST OF D. LA75 MOUTIS	Dual-AXIS MUUUI

GOTONova[™] Controllers

	GOTONova TM Controller AltAzi/EQ Controller with 130,000 objects in database
	GOTONova [™] Controller AltAzi/EQ Controller with 50,000 objects in database
#8403	GOTONova [™] Controller AltAzi/EQ Controller with 5,000 objects in database
	(for SmartStar [™] -E)

Accessories

,	301100	
#8411	GPS Module	Compatible with all GOTONova TM Models
#8412	Electronic Focuser Mod	ule
#8413	2" Stainless Steel tripod	For EQ、CG5、GPD、LX75 Mounts
#8414	EQ5 Equatorial Mount	
#8415	Controller Cable	Compatible with all GOTONova [™] Models
#8416	USB Cable	For #8401, #8402 Controllers
#8417	AC Adaptor	Compatible with all GOTONova TM Models
#8418	12V Car Recharger	
	and Cable	

Appendix G Alignment Stars

Stars for Alignment (iOptron SmartStar, GoToNova)

www.iOptron.com

StarName	Constellation	RA	DEC	Additional Information
Achernar	Eri	1.6285685	-57.2367575	TYC 8478-1395-1 PPM 331199 SAO 232481 HD 10144 CPD -57 00334
Acrux	Cru	12.443056	-63.098611	TYC 8979-3464-1 PPM 359410 SAO 251904 HD 108248 CPD -62 02745
Al Na'ir	Gru	22.136944	-46.960833	TYC 8438-1959-1 PPM 327928 SAO 230992 HD 209952 CPD -47 09830
Albireo	Cyg	19.511944	27.959167	TYC 2133-2964-1 PPM 109139 SAO 87301 HD 183912 BD +27 3410
Aldebaran	Tau	4.598611	16.508889	TYC 1266-1416-1 PPM 120061 SAO 94027 HD 29139 BD +16 0629
Alphard	Нуа	9.459790	-8.658602	TYC 5460-1592-1 PPM 192393 SAO 136871 HD 81797 BD -8 2680
Alphecca	СоВ	15.578056	26.714444	TYC 2029-1690-1 PPM 104146 SAO 83893 HD 139006 BD +27 2512
Alpheratz	And	0.139444	29.090278	TYC 1735-3180-1 PPM 89441 SAO 73765 HD 358 BD +28 0004
Altair	Aql	19.846111	8.868333	TYC 1058-3399-1 PPM 168779 SAO 125122 HD 187642 BD +8 4236
Antares	Sco	16.489722	-26.431667	TYC 6803-2158-1 PPM 265579 SAO 184415 HD 148478 CD -26 11359 CPD -26 05648
Arcturus	Воо	14.260833	19.182222	TYC 1472-1436-1 PPM 130442 SAO 100944 HD 124897 BD +19 2777
Betelgeuse	Ori	5.919519	7.406944	TYC 129-1873-1 PPM 149643 SAO 113271 HD 39801 BD +7 1055
Canopus	Car	6.399167	-52.695556	TYC 8534-2277-1 PPM 335149 SAO 234480 HD 45348 CPD -52 00914
Capella	Aur	5.277778	45.997500	TYC 3358-3141-1 SAO 40186 HD 34029 BD +45 1077
Deneb	Cyg	20.690000	45.280000	TYC 3574-3347-1 PPM 60323 SAO 49941 HD 197345 BD +44 3541
Denebola	Leo	11.817500	14.571667	TYC 870-988-1 PPM 128576 SAO 99809 HD 102647 BD +15 2383
Deneb Kaitos	Cet	0.726111	-17.986389	TYC 5847-2333-1 PPM 209214 SAO 147420 HD 4128 BD -18 0115
Dubhe	UMa	11.061667	61.750556	TYC 4146-1274-1 PPM 17705 SAO 15384 HD 95689 BD +62 1161
Fomalhaut	PsA	22.960833	-29.622222	TYC 6977-1267-1 PPM 274426 SAO 191524 HD 216956 CD -30 19370 CPD -30 06685
Hamal	Ari	2.119444	23.462222	TYC 1758-2416-1 PPM 91373 SAO 75151 HD 12929 BD +22 0306
Markab	Peg	23.078889	15.205000	TYC 1711-2475-1 PPM 142158 SAO 108378 HD 218045 BD +14 4926

Mirfak	Per	3.405000	49.861111	TYC 3320-2808-1 PPM 46127 SAO 38787 HD 20902 BD +49 0917
Mizar	UMa	13.398333	54.925278	TYC 3850-1385-1 PPM 34007 SAO 28737 HD 116656 BD +55 1598
Nunki	Sgr	18.920833	-26.296667	TYC 6868-1829-1 PPM 269078 SAO 187448 HD 175191 CD -26 13595 CPD -26 06590
Pollux	Gem	7.754722	28.025833	TYC 1920-2194-1 PPM 97924 SAO 79666 HD 62509 BD +28 1463
Procyon	СМа	7.655000	5.224444	TYC 187-2184-1 SAO 115756 HD 61421 BD +5 1739
Rasalhague	Oph	17.581944	12.560000	TYC 1000-2508-1 PPM 133563 SAO 102932 HD 159561 BD +12 3252
Regulus	Leo	10.139444	11.967222	TYC 833-1381-1 PPM 127140 SAO 98967 HD 87901 BD +12 2149
Rigel	Ori	5.241944	-8.201389	TYC 5331-1752-1 PPM 187839 SAO 131907 HD 34085 BD -8 1063
Rigel Kentaurus	Cen	14.660138	-60.833958	TYC 9007-5849-1 SAO 252838 HD 128620 CPD -60 05483
Schedar	Cas	0.675000	56.536944	TYC 3663-2668-1 PPM 25578 SAO 21609 HD 3712 BD +55 0139
Sirius	СМа	6.752222	-16.716111	YC 5949-2777-1 SAO 151881 HD 48915 BD -16 1591
Spica	Vir	13.419722	-11.161111	TYC 5547-1518-1 PPM 227262 SAO 157923 HD 116658 BD -10 3672
Suhail	Vel	9.133056	-43.432222	TYC 7689-2617-1 PPM 313999 SAO 220878 HD 78647 CD -42 04990 CPD -42 03366
Vega	Lyr	18.615556	38.783611	YC 3105-2070-1 SAO 67174 HD 172167 BD +38 3238

IOPTRON TWO YEAR TELESCOPE, MOUNT, AND CONTROLLER WARRANTY

A. iOptron warrants your telescope, mount, or controller to be free from defects in materials and workmanship for two years. iOptron will repair or replace such product or part which, upon inspection by iOptron, is found to be defective in materials or workmanship. As a condition to the obligation of iOptron to repair or replace such product, the product must be returned to iOptron together with proof-of-purchase satisfactory to iOptron.

B. The Proper Return Authorization Number must be obtained from iOptron in advance of return. Call iOptron at 1.866.399.4587 to receive the number to be displayed on the outside of your shipping container.

All returns must be accompanied by a written statement stating the name, address, and daytime telephone number of the owner, together with a brief description of any claimed defects. Parts or product for which replacement is made shall become the property of iOptron.

The customer shall be responsible for all costs of transportation and insurance, both to and from the factory of iOptron, and shall be required to prepay such costs.

iOptron shall use reasonable efforts to repair or replace any telescope, mount, or controller covered by this warranty within thirty days of receipt. In the event repair or replacement shall require more than thirty days, iOptron shall notify the customer accordingly. iOptron reserves the right to replace any product which has been discontinued from its product line with a new product of comparable value and function.

This warranty shall be void and of no force of effect in the event a covered product has been modified in design or function, or subjected to abuse, misuse, mishandling or unauthorized repair. Further, product malfunction or deterioration due to normal wear is not covered by this warranty.

IOPTRON DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WHETHER OF MERCHANTABILITY OF FITNESS FOR A PARTICULAR USE, EXCEPT AS EXPRESSLY SET FORTH HERE. THE SOLE OBLIGATION OF IOPTRON UNDER THIS LIMITED WARRANTY SHALL BE TO REPAIR OR REPLACE THE COVERED PRODUCT, IN ACCORDANCE WITH THE TERMS SET FORTH HERE. IOPTRON EXPRESSLY DISCLAIMS ANY LOST PROFITS, GENERAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM BREACH OF ANY WARRANTY, OR ARISING OUT OF THE USE OR INABILITY TO USE ANY IOPTRON PRODUCT. ANY WARRANTIES WHICH ARE IMPLIED AND WHICH CANNOT BE DISCLAIMED SHALL BE LIMITED IN DURATION TO A TERM OF TWO YEARS FROM THE DATE OF ORIGINAL RETAIL PURCHASE.

Some states do not allow the exclusion or limitation of incidental or consequential damages or limitation on how long an implied warranty lasts, so the above limitations and exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

iOptron reserves the right to modify or discontinue, without prior notice to you, any model or style telescope.

If warranty problems arise, or if you need assistance in using your telescope, mount, or controller contact:

iOptron Corporation Customer Service Department 6X Gill Street Woburn, MA 01801 www.ioptron.com Tel. (866)399-4597 Fax. (781)935-2860 Monday-Friday 9AM-5PM EST

NOTE: This warranty is valid to U.S.A. and Canadian customers who have purchased this product from an authorized iOptron dealer in the U.S.A. or Canada or directly from iOptron. Warranty outside the U.S.A. and Canada is valid only to customers who purchased from an iOptron Distributor or Authorized iOptron Dealer in the specific country. Please contact them for any warranty service.